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Pricing of exotic derivatives: parametric approach
The parametric approach for valuing exotic derivatives involves:

• specifying parametric risk-neutral dynamics for the spot price
S of an underlying asset (e.g., Black Scholes, CEV, Heston,
SABR, Hull-White, MJD, Variance Gamma, CGMY, . . . ),

• calibrating the parameters to liquid market prices of puts
P (Ki, Tj) & calls C(Ki, Tj), typically by a least squares fit,

• valuing exotics (either analytically or numerically) under the
specification using the calibrated parameters.

This approach has a number of shortcomings:

• parametric models rarely exactly fit market data,

• the parameters can be difficult to identify and the calibration
procedure is often computationally intensive. As time evolves,
the fit worsens, requiring re-calibration,

• to speed up the (re-)calibration, the dynamical specification is
often chosen to produce closed-form call/put prices, but these
are rare and possibly far from market prices.



Pricing of exotic derivatives: non-parametric approach
The non-parametric approach to pricing exotics involves:

• specifying non-parametric risk-neutral dynamics for the
underlying spot price S (e.g., under zero rates & dividends, S
is a driftless diffusion or a positive continuous martingale),

• converting discrete strike/maturity option prices into
arbitrage-free curves P/C(T ), P/C(K), or surfaces
P/C(K,T ),

• deriving upper and/or lower bounds for exotic derivative
prices consistent with the curve or surface. Sometimes, the
bounds meet, eg. for (continuously monitored) variance swaps
relative to P/C(K).

This approach has some possible shortcomings:

• difficult to interpolate/extrapolate P/C(Ki, Tj) arbitrage-free.

• sub and super-replication strategies typically rule out dynamic
trading in options ex ante; thereby widening the no arbitrage
bounds. The resulting lower and upper bounds may be too far
apart to use as the bid and ask price of the exotic.



Pricing of exotic derivatives: semi-parametric approach

The semi-parametric approach we use can be outlined as follows:

• specify part of the risk-neutral dynamics of S parametrically,
with the rest specified non-parametrically,

• when the exotic’s payoff depends on [lnS]T and possibly also
ST , we get unique prices and hedges relative to given
co-terminal European call prices C(K) and put prices P (K).

This approach has a number of advantages:

• compared to parametric models, semi-parametric models
are more flexible and therefore more likely to fit market data,

• compared to the typical usage of non-parametric models,
our replicating strategy allows dynamic trading in calls and
puts, causing the upper and lower bounds on value to meet.



Basic assumptions and notation

Throughout this talk, we make the following assumptions:

• no arbitrage,

• no transactions costs,

• zero interest rates/dividends.

We fix a maturity date T .

Denote by S = (St)0≤t≤T the price of a strictly positive risky asset.

Denote by X = (Xt)0≤t≤T the ln price: Xt = lnSt.

Under the above assumptions, put and call prices are given by

P (K) = E(K − ST )+, C(K) = E(ST −K)+.

Here, E denotes expectation with respect to the market’s chosen
risk-neutral pricing measure Q.

We assume a call and/or put trades at every strike K ∈ (0,∞).



Non-parametric pricing of Path-Independent Payoffs
Carr and Madan (1998) show that, if f can be expressed as the
difference of convex functions, then for any κ ∈ R+, we have

f(s) = f(κ) + f ′(κ)
(

(s− κ)+ − (κ− s)+
)

+

∫ κ

0
dKf ′′(K)(K − s)+ +

∫ ∞
κ

dKf ′′(K)(s−K)+.

Replacing s with ST , setting κ = S0, and taking an expectation

E f(ST ) = f(S0) +

∫ S0

0
dKf ′′(K)P (K) +

∫ ∞
S0

dKf ′′(K)C(K).

Takeaway: the price of any path-independent payoff Ef(ST ) can
be expressed relative to market prices of puts and calls on ST .

This result makes no assumptions on the dynamics of the spot
price process S.

To price path-dependent payoffs, we need to impose some
structure on the risk-neutral dynamics of S.



Our Semi-parametric model
On a filtered probability space (Ω,F,F,P) the underlying asset’s
spot price S solves:

dSt = σtStdWt +

∫
R

(ez − 1)St−Ñ(dt,dz),

Ñ(dt,dz) = N(dt,dz)− ν(dz)dt,

• W is a Brownian motion under the risk-neutral pricing
measure Q, with respect to (w.r.t.) the filtration
F = (Ft)0≤t≤T .

• Ñ is a compensated Poisson random measure w.r.t. Q.

• The volatility process σ evolves independently of S,W , and Ñ .

The model is semi-parametric in that:

• The vol process σ is non-parametric (σ need not be Markov,
eg. fractional Brownian motion w. unknown Hurst parameter,
and may jump with unknown intensity/jump size).

• We specify the risk-neutral Lévy measure ν parametrically.



Framework allows for asymmetric implied volatility smiles
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dXt = γ(Zt)dt+
√
ZtdWt +

∫
R

zÑ(dt,dz),

dZt = κ(θ − Zt)dt+ δ
√
ZtdBt,

ν(dz) =
1√

2πs2
exp

(−(z −m)2

2s2

)
dz.



Types of claims we consider
By Itô’s Lemma, the process X := lnS satisfies

dXt = −1
2σ

2
t dt+ σtdWt

−
∫
R

(ez − 1− z)ν(dz)dt+

∫
R

zÑ(dt,dz).

We wish to price and hedge hybrid claims of the form

Payoff at time T = ϕ(XT , [X]T ),

[X]T = realized quadratic variation of X up to time T .

Examples

Variance Swap : ϕ(XT , [X]T ) = [X]T ,

Volatility Swap : ϕ(XT , [X]T ) =
√

[X]T ,

Sharpe Ratio : ϕ(XT , [X]T ) = (XT −X0)/
√

[X]T .

We also consider options on Leveraged ETFs, which are
path-dependent claims on X, but whose payoff cannot be written
simply as ϕ(XT , [X]T ).



Pricing exponential claims
We use exponential claims as a basis for more general claims.

exponential claim payoff : eiωXT +is[X]T

To this end, the following proposition will be useful.

Proposition

Define u : C2 → C and ψ : C2 → C as

u(ω, s) := i

(
−1

2 ±
√

1
4 − ω2 − iω + 2is

)
,

ψ(ω, s) :=

∫
R

ν(dz)
(

eiωz+isz2 − 1− iω(ez − 1)
)
.

Then the joint characteristic function of (XT , [X]T ) given Ft is

Ete
iωXT +is[X]T︸ ︷︷ ︸

Path-dep. claim

=
e(T−t)ψ(ω,s)+i(ω−u(ω,s))Xt+is[X]t

e(T−t)ψ(u(ω,s),0)︸ ︷︷ ︸
Ft-measurable

Ete
iu(ω,s)XT︸ ︷︷ ︸

Path-ind. claim

.



Key ingredients of proof
X can be separated into a continuous component and an
independent jump component

dXt = dXc
t + dXj

t ,

dXc
t = −1

2σ
2
t dt+ σtWt,

dXj
t = −

∫
R

(ez − 1− z)ν(dz)dt+

∫
R

zÑ(dt,dz).

Carr and Lee (2008) show that the continuous component
(Xc, [Xc]) satisfies

Ete
iω(Xc

T−X
c
t )+is([Xc]T−[Xc]t) = Ete

iu(ω,s)(Xc
T−X

c
t ).

The jump component (Xj , [Xj ]) is a two-dimensional Lévy process
with joint characteristic exponent ψ

Ete
iω(Xj

T−X
j
t )+is([Xj ]T−[Xj ]t) = e(T−t)ψ(ω,s),



Proof
Using results from the previous page, we have

Ete
iω(XT−Xt)+is([X]T−[X]t)

= Ete
iω(Xc

T−X
c
t )+is([Xc]T−[Xc]t)

Ete
iω(Xj

T−X
j
t )+is([Xj ]T−[Xj ]t) (Xc ⊥⊥ Xj)

= Ete
iu(ω,s)(Xc

T−X
c
t ) (Carr Lee result)

e(T−t)ψ(ω,s) ((Xj , [Xj ]) is Lévy)

=
Ete

iu(ω,s)(XT−Xt)

Ete
iu(ω,s)(Xj

T−X
j
t )

e(T−t)ψ(ω,s) (Xc ⊥⊥ Xj)

=
Ete

iu(ω,s)(XT−Xt)

e(T−t)ψ(u(ω,s),0)
e(T−t)ψ(ω,s). (Xj is Lévy)

Thus, we obtain

Ete
iωXT +is[X]T =

e−iu(ω,s)XteiωXt+is[X]t

e(T−t)ψ(u(ω,s),0)
e(T−t)ψ(ω,s)Ete

iu(ω,s)XT .



Pricing power-exponential claims

We can use previous result to price power-exponential claims

EtX
n
T [X]mT eiωXT +is[X]T︸ ︷︷ ︸

power-exponential claim price

= (−i∂ω)n(−i∂s)mEteiωXT +is[X]T

= (−i∂ω)n(−i∂s)m
e(T−t)ψ(ω,s)+i(ω−u(ω,s))Xt+is[X]t

e(T−t)ψ(u(ω,s),0)︸ ︷︷ ︸
=:F (ω,s,Xt,[X]t)

Ete
iu(ω,s)XT

=

n∑
j=0

m∑
k=0

(
n

j

)(
m

k

)
(−i∂ω)j(−i∂s)kF (ω, s,Xt, [X]t)︸ ︷︷ ︸

Ft-measurable

× Et(−i∂ω)n−j(−i∂s)m−keiu(ω,s)XT︸ ︷︷ ︸
Path-independent claim price



Example: variance swap
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We plot g(ln s) as a function of s where

Eg(lnST ) = E[lnS]T , ν(dz) = λδm(z)dz,

T = 0.25, S0 = 1.

Left : λ = 1.00, m = {−2.00, 0, 2.00},
Right : m = −2.00, λ = {1.00, 2.00, 3.00}.



Pricing fractional powers of [X]T

We use the following integral representation

vr =
r

Γ(1− r)

∫ ∞
0

dz
1

zr+1

(
1− e−zv

)
, 0 < r < 1,

where Γ is the Gamma function. Setting X0 = 0, we have

Γ(1− r)
r

E[X]rT

=

∫ ∞
0

dz
1

zr+1

(
E1− Ee−z[X]T︸ ︷︷ ︸
exponential claims

)

= E

∫ ∞
0

dz
1

zr+1

(
eiu(0,0)XT − eTψ(0,iz)

eTψ(u(0,iz),0)
eiu(0,iz)XT

)
=:

Γ(1− r)
r

Eg(XT ).



Example: volatility swap

Effect of jump size Effect of jump intensity
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We plot g(ln s) as a function of s where

Eg(lnST ) = E
√

[lnS]T , ν(dz) = λδm(z)dz, T = 0.25.

Left : λ = 1.00, m = {−1.25, 0.00, 1.25},
Right : m = −1.25, λ = {1.00, 2.00, 3.00}.



Pricing ratio claims Xn
T/([X]T + ε)r

Using the integral representation

1

(v + ε)r
=

1

rΓ(r)

∫ ∞
0

dz e−z
1/r(v+ε), r > 0,

we have

E
Xn
T eipXT

([X]T + ε)r

=
1

rΓ(r)

∫ ∞
0

dzEXn
T eipXT−z1/r([X]T +ε)

=
1

rΓ(r)

∫ ∞
0

dz e−z
1/rε(−i∂p)n EeipXT−z1/r[X]T︸ ︷︷ ︸

exponential claim price

=
1

rΓ(r)
E

∫ ∞
0

dz e−z
1/rε(−i∂p)n

eTψ(p,iz1/r)

eTψ(u(p,iz1/r),0)
eiu(p,iz1/r)XT

=: Eg(XT ).



Example: realized Sharpe ratio
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We plot g(ln s) as a function of s where ε = 0.001 and

Eg(lnST ) = EXT /
√

[lnS]T + ε, ν(dz) = λδm(z)dz.



Leveraged ETFs
The relationship between an Leveraged Exchange Traded Fund
(LETF) L = eY and the underlying Exchange Traded Fund ETF
S = eX is

dLt
Lt−

= β
dSt
St−

,

where β ∈ {−2,−1, 2, 3} is the leverage ratio.

Here, we assume a jump in S will not send L to a negative value.

The value of YT depends on the path of X as follows

dYt = dY c
t + dY j

t ,

dY c
t = βdXc

t + 1
2β(1− β)d[Xc]t,

dY j
t = −

∫
R

(
β(ez − 1)− ln

(
β(ez − 1) + 1

))
ν(dz)dt

+

∫
R

ln
(
β(ez − 1) + 1

)
Ñ(dt,dz).



Characteristic Function of YT

While YT depends on the path of X, we can relate the
characteristic function of YT to the characteristic function of XT

only:

Proposition

Define χ : C→ C by

χ(q) :=

∫
R

ν(dz)
((
β(ez − 1) + 1

)iq − 1− iqβ(ez − 1)
)
.

Then the characteristic function of (YT − Yt), conditional on Ft, is

Ete
iq(YT−Yt)︸ ︷︷ ︸

Path-dep. claim

=
e(T−t)χ(q)

e(T−t)ψ(u(qβ,q
1
2β(1−β)),0)︸ ︷︷ ︸

Ft-measurable

Ete
iu(qβ,q

1
2β(1−β))(XT−Xt)︸ ︷︷ ︸

Path-independent claim

,

where u and ψ as defined previously.



Proof
Using

Ete
iq(Y j

T−Y
j
t ) = e(T−t)χ(q), (1)

Ete
iω(Xj

T−X
j
t )+is([Xj ]T−[Xj ]t) = e(T−t)ψ(ω,s), (2)

and independence of continuous and jump components, we have

Ete
iq(YT−Yt) = Ete

iq(Y c
T−Y

c
t )Ete

iq(Y j
T−Y

j
t ) (Y c ⊥⊥ Y j)

= Ete
iqβ(Xc

T−X
c
t )+iq

1
2β(1−β)([Xc]T−[Xc]t)e(T−t)χ(q) (by (1))

= Ete
iu(qβ,q

1
2β(1−β))(Xc

T−X
c
t )e(T−t)χ(q) (Carr Lee result)

=
Ete

iu(qβ,q
1
2β(1−β))(XT−Xt)

Ete
iu(qβ,q

1
2β(1−β))(Xj

T−X
j
t )

e(T−t)χ(q) (Xc ⊥⊥ Xj)

=
Ete

iu(qβ,q
1
2β(1−β))(XT−Xt)

e(T−t)ψ(u(qβ,q
1
2β(1−β)),0)

e(T−t)χ(q). (by (2))



Pricing general claims on YT
Let ϕ̂ be the (possibly generalized) Fourier transform of ϕ

Fourier Transform : ϕ̂(q) =
1

2π

∫
R

dy e−iqyϕ(y),

Inverse Transform : ϕ(y) =

∫
R

dqr eiqyϕ̂(q),

where qr is the real part of q.

The price of a claim with payoff ϕ(YT ) can be obtained as follows

Etϕ(YT )

=

∫
R

dqrϕ̂(q)eiqYtEte
iq(YT−Yt)

=

∫
R

dqrϕ̂(q)eiqYt
e(T−t)χ(q)

e(T−t)ψ(u(qβ,q
1
2β(1−β)),0)

Ete
iu(qβ,q

1
2β(1−β))(XT−Xt)

=: Etg(XT ;Xt, Yt)︸ ︷︷ ︸
Path-indep. claim price

.



Example: Calls on LT
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We plot g(ln s;x, y) as a function of s where

Eg(lnST ;X0, Y0) = E(LT −K)+, ν(dz) = λδm(z)dz.

where K = 1.0, T = 1/4, X0 = Y0 = 0.0, m = −0.4 and λ = 2.0.

Left : β = {1.0, 2.0, 3.0}, Right : β = {−1.0,−2.0,−3.0}.



Replicating Exponential Claims
The value of an exponential claim at any time t ≤ T is

Ete
iωXT +is[X]T = AtQ

(u)
t , u ≡ u(ω, s),

where we have defined

At := ei(ω−u)Xt+is[X]t e(T−t)ψ(ω,s)

e(T−t)ψ(u,0)︸ ︷︷ ︸
Ft-measurable

, Q
(u)
t := Ete

iuXT︸ ︷︷ ︸
Path-ind. claim

.

To derive the hedging strategy, take the differential

d(AtQ
(u)
t ) = AtdQ

(u)
t +Q

(u)
t− dAt + d[A,Q(u)]t,

and show that the right-hand side can be expressed as a
self-financing portfolio of traded assets, namely

• the underlying stock S

• zero-coupon bonds B

• European exponential claims Q(q) where q ∈ C.



Key Ingredients in the Derivation

• Jump in value of European claim Q
(q)
t = Ete

iqXT is

∆Q
(q)
t = Qt−

(
eiq∆Xt − 1

)
+ jump due to ∆σt.

• We also have the following symmetry

R
(q)
t Q

(q)
t = R

(−i−q)
t Q

(−i−q)
t ,

where the process R(q) is given by

R
(q)
t = e−iqXt+(T−t)ψ(−i−q,0).



Explicit Replication Strategy
We have (traded assets in blue)

d(AtQ
(u)
t ) = At−dQ

(u)
t + i(ω − u)

At−Q
(u)
t−

St−
dSt

+
∑m

j=1H
(j)
t−

(
R

(qj)
t− dQ

(qj)
t −R(−i−qj)

t− dQ
(−i−qj)
t

)
+
∑m

j=1H
(j)
t− (1− 2iqj)

R
(qj)

t− Q
(qj)

t−
St−

dSt,

where H ∈ Cm satisfies

0 = ∆Γ
(u)
t +

∑m
j=1H

(j)
t

(
∆Ω

(qj)
t −∆Ω

(−i−qj)
t

)
,

and for any q ∈ C, the processes Γ(u) and Ω(q) are given by

dΓ
(u)
t := At−Q

(u)
t−

∫
R

(
eiωz+isz2 − eiuz − i(ω − u)(ez − 1)

)
N(dt,dz),

dΩ
(q)
t := R

(q)
t−Q

(q)
t−

∫
R

(
− eiqz + 1 + iq(ez − 1)

)
N(dt,dz).



Conclusion

• We specified semi-parametric dynamics for a spot price S
• The volatility process σ is non-parametric; it may be

non-Markovian (e.g., driven by fBM) and may jump
• In contrast. the jumps in log price X are specified

parametrically via the risk-neutral Lévy measure ν
• Asymmetric jumps in X lead to asymmetric implied

volatility smiles

• We have shown how to price the following path-dependent
claims relative to the market prices of European calls and puts

• claims written purely on “realized variance” (i.e the quadratic
variation of log price).

• hybrid claims on both realized variance and final spot price
• options on LETFs

• We have shown how to replicate exponential claims with a
self-financing portfolio of traded assets. Since the family of
complex exponential payoffs form a basis, almost any other
payoff is also replicable.


