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Pricing of exotic derivatives: parametric approach
The parametric approach for valuing exotic derivatives involves:

e specifying parametric risk-neutral dynamics for the spot price
S of an underlying asset (e.g., Black Scholes, CEV, Heston,
SABR, Hull-White, MJD, Variance Gamma, CGMY, ...),

e calibrating the parameters to liquid market prices of puts
P(K;,T;) & calls C(K;,T}), typically by a least squares fit,
e valuing exotics (either analytically or numerically) under the
specification using the calibrated parameters.
This approach has a number of
e parametric models ,

e the parameters can be difficult to and the calibration
procedure is often . As time evolves,
the fit worsens, requiring .

e to speed up the (re-)calibration, the dynamical specification is

often chosen to produce , but these
are rare and possibly far from market prices.



Pricing of exotic derivatives: non-parametric approach
The non-parametric approach to pricing exotics involves:

e specifying non-parametric risk-neutral dynamics for the
underlying spot price S (e.g., under zero rates & dividends, S
is a driftless diffusion or a positive continuous martingale),

e converting discrete strike/maturity option prices into
arbitrage-free curves P/C(T'), P/C(K), or surfaces
P/C(K,T),

e deriving upper and/or lower bounds for exotic derivative
prices consistent with the curve or surface. Sometimes, the
bounds meet, eg. for (continuously monitored) variance swaps
relative to P/C(K).

This approach has some possible
e difficult to interpolate/extrapolate P/C(Kz, Tj;) arbitrage-free.
e sub and super-replication strategies
ex ante; thereby widening the no arbitrage
bounds. The resulting lower and upper bounds may be
to use as the bid and ask price of the exotic.



Pricing of exotic derivatives: semi-parametric approach

The semi-parametric approach we use can be outlined as follows:

e specify part of the risk-neutral dynamics of S parametrically,
with the rest specified non-parametrically,

e when the exotic's payoff depends on [In S|y and possibly also
ST, we get unique prices and hedges relative to given
co-terminal European call prices C(K) and put prices P(K).

This approach has a number of

e compared to parametric models, semi-parametric models
are and therefore market data,

e compared to the typical usage of non-parametric models,
our replicating strategy allows
, causing the upper and lower bounds on value to meet.



Basic assumptions and notation

Throughout this talk, we make the following assumptions:
e no arbitrage,
e no transactions costs,
e zero interest rates/dividends.

We fix a maturity date 7.

Denote by S = (S;)o<t<7 the price of a strictly positive risky asset.

Denote by the : Xy =1nS;.
Under the above assumptions, put and prices are given by
P(K)=E(K — S7)%, =E(Sr — K)*.

Here, IE denotes expectation with respect to the market’s chosen
risk-neutral pricing measure Q.

We assume a call and/or put trades at every strike K € (0, c0).



Non-parametric pricing of Path-Independent Payoffs

Carr and Madan (1998) show that, if f can be expressed as the
difference of convex functions, then for any k € R™, we have

1(8) = J(5) + 1) (s = ) * = (= )
+ /OK dK " (K)(K —s)" + /:O dK f"(K)

Replacing s with Sp, setting x = Sj, and taking an expectation

So 00
E f(Sr) = £(S0) + / AK f"(K)P(K) + /S dF f ()

0

Takeaway: the price of any path-independent payoff I£f(S7) can
be expressed relative to market prices of puts and on Sp.

This result makes no assumptions on the dynamics of the spot
price process S.

To price path-dependent payoffs, we need to impose some
structure on the risk-neutral dynamics of S.



Our Semi-parametric model
On a filtered probability space (2, F, F,P) the underlying asset'’s
spot price S solves:

dSt = Stth + / (62 — 1)St,j\v7(dt, dZ),
R

N(dt,dz) = N(dt,dz) — dt,

e IV is a Brownian motion under the risk-neutral pricing
measure @, with respect to (w.r.t.) the filtration

F = (Ft)o<e<r-
e Nisa compensated Poisson random measure w.r.t. Q.
e The volatility process o evolves independently of S, W, and N.
The model is semi-parametric in that:

e The is non-parametric (o need not be Markov,
eg. fractional Brownian motion w. unknown Hurst parameter,
and may jump with unknown intensity/jump size).

e We specify the risk-neutral parametrically.



Framework allows for asymmetric implied volatility smiles
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Imp. vol as a function of In-moneyness-to-maturity for
T ={1,2,3} months.

AdX; = y(Z,)dt + \/ZdW, + / ZN(dt,dz),
R
dZt = /1(9 - Zt)dt + (5\/ thBt,
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Types of claims we consider
By Itd's Lemma, the process X :=In S satisfies

dX, = —3o7dt + oy dW;
— / (e =1 —2)v(dz)dt —|—/ ZN(dt,dz).
R

R
We wish to price and hedge hybrid claims of the form

Payoff at time 7' = (X, [X]7),
[X | = realized quadratic variation of X up to time 7.

Examples
Variance Swap : (X7, [X]r) = [X]r,
Volatility Swap : o(Xr, [ X]|r) = V[X]1,
Sharpe Ratio : (X7, [X]7) = (X7 — Xo)/v/[X]r-

We also consider options on Leveraged ETFs, which are
path-dependent claims on X, but whose payoff cannot be written
simply as (Xr, [X]7).




Pricing exponential claims
We use exponential claims as a basis for more general claims.
exponential claim payoff : el X Hs[X]r

To this end, the following proposition will be useful.
Proposition
Definew: C?> — C and ¢ : C2 — C as

=i (—%i\/i—w2—1w+2is>,
= / v(dz) (ei‘”z+isz2 —1—iw(e® — 1))
R

Then the joint characteristic function of (X, [X]r) given F; is

o(T—1) +i(w— )X +1is[X]e

iwXpis[X]r _
B = =) o)

Etei X .

——
Path-ind. claim

Path-dep. claim
Fi-measurable



Key ingredients of proof
X can be separated into a continuous component and an
independent
dX; =dX; +dY/,
dX{ = —Lofdt + oW,

dv/ = —/R(ez—1—z)u(dz)dt+/RzN(dt,dz).

Carr and Lee (2008) show that the continuous component
(X¢, [X€]) satisfies

Eetv(Xp— XD +is(Xr—[XT) _ [ elulw,s)(Xp—XF)
The is a two-dimensional Lévy process
with joint characteristic exponent

]Eteiw(X%*Xg)‘Fis([Xj]T*[Xj]t) — e(Tit)



Proof

Using results from the previous page, we have
E et (Xr—Xo)+is([X]r—[X]:)
= Belv(Xr—XD)+is((XIr—[X )
(X¢ 1L X7)
= Betu(@s)(Xp—XF) (Carr Lee result)

((X7,[X7]) is Lévy)
Eteiu(w,s)(XTth)

_ c j
E,eiu(w:s)(Xq—X]) (X7 LX)

Eteiu(w,s)(XT—Xt)
e(Tft)w(u(w,s),O)
Thus, we obtain

(X7 is Lévy)

E S0 X+ is[X] efiu(w,s)Xteint+is[X}t
e T D(u(w,5)0)

Eteiu(w,s)XT )




Pricing power-exponential claims

We can use previous result to price -exponential claims

Et einT+iS[X]T

-exponential claim price
— EteinT—i—is[X]T
_ (T (w,s)+i(w—u(w,s)) Xe+is[X]: B et()Xr
e(T*t)’l,Z)(’U,(w,s),O)

= F(w,5,X1,[X]0)

I
NE

F((JJ, S, Xt, [X]t)

Fi-measurable

x [, eiu(w,s)XT

-~
Path-independent claim price



Example: variance swap

Effect of jump size Effect of jump intensity

L L
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We plot g(In s) as a function of s where

Eg(In St) = E[ln S]r, v(dz) = Ao (2)dz,
T = 0.25, Sp = 1.
Left - A = 1.00, m={ 2.00,0,2.00},
Right:  m = —2.00, A = {1.00,2.00,3.00}.



Pricing fractional powers of [X|r

We use the following integral representation

UT—T/OOdzl(l—eZ“) 0<r<l1

S T(-7) 2zl ’ ’

where I" is the Gamma function. Setting Xo = 0, we have
r(1—r)

r

& 1
= / dz F(E — ]Eeiz[X]T )
(S —
0 exponential claims
T(0,i
R R _ e
0 or+l el (u(0,iz),0)
I'l—r
= (T)EQ(XT>-

E[X]7



Example: volatility swap

Effect of jump size Effect of jump intensity

We plot g(In s) as a function of s where

Eg(InSt) = Ey/[InS]p, v(dz) = Adn(z)dz, T =0.25.

Left : A = 1.00, m
Right : m = —1.25, A

{ ,0.00,1.25},
{1.00,2.00,3.00}.



Pricing ratio claims X7./([X]r + ¢)"

Using the integral representation

1 1 e 1/r
= / dze=#/"(vte) r >0,
(v+e)  rI'(r) Jo
we have
]E eipXT
((X]r +2)
1 > : 1/r
= 7( ) / dz]E eleT—Z ([X]T+8)
rI'(r) Jo
1 > 1/r : 1/r
_ 1—\( ) / dze2"'"¢ EeleT—z (X]r
rLr 0

exponential claim price
T s 1/r
_ 1 - /oo &b e—zl/TE e P(p,iz'/T) iu(p,izl/T)XT
rI(r)  Jo el (u(p,iz!/7),0)
=: Eg(Xr).




Example: realized Sharpe ratio

A=1.0, m = —0.675 A =20, m=—0.675
. 1
. o

A=1.0, m=0.675 A=2.0,m=0.675

We plot g(Ins) as a function of s where ¢ = 0.001 and

Eg(ln St) = EXp/y/[InS]r + ¢, v(dz) = Aom(2)dz.



Leveraged ETFs

The relationship between an Leveraged Exchange Traded Fund
(LETF) L = e¥ and the underlying
is

dL;

I:B )

where 5 € {—2,—1,2,3} is the leverage ratio.
Here, we assume a jump in S will not send L to a negative value.

The value of Y depends on the path of X as follows

dY; = dYyF +dY/,
Ay, = dX] + 58(1 — B)d X,

avy = — /}R (ﬂ(ez —1)—In(Be* — 1)+ 1)>V(dz)dt
+/ In (B(e* — 1) + 1) N(dt,dz).
R



Characteristic Function of Y

While Y7 depends on the path of X, we can relate the
characteristic function of Y7 to the characteristic function of
only:

Proposition
Define x : C — C by

x(q) == /Rl/(dz)<(ﬂ(ez —-1)+ 1)iq —1—1igB(e* — 1))

Then the characteristic function of (Yp —Y;), conditional on Fy, is
e(T—t)x(q)

o(T—0(u(a8,a56(1-5)).0)

]EteiQ(YT—Yt) — E,

Path-independent claim

Path-dep. claim

Fi-measurable

where u and v as defined previously.



Proof
Using

Eteiq(Y%—SQj) = e(T=tx(9) (1)
Eteiw(X%fXg)Jris([Xj]Tf[Xj]t) = o(T—t)¥(ws) (2)
and independence of continuous and jump components, we have
[B0i(Y1—=Y0) _ ,0ia(YF—Ye) (Ve 1 YY)
— [ el0F(XF—XP)+a58(1-B) (X Ir—[X°y) (by (1))
. 1 C c
— E,et(@8a3A(1=B) (X7~ XF) (Carr Lee result)

(@03 A(1-8)) (Xr—X1)

: —— (X¢ 1L X7)
EteiU(qﬂ,qgﬁ(l—ﬁ))(XjT—Xf)

[, tu(a8:0380-8)(Xr—X0)

(by (2))

o(T—0)%(u(aB.a38(1-5)).0)



Pricing general claims on Y
Let © be the (possibly generalized) Fourier transform of

. 1 _
Fourier Transform : dye iqy ,
T on
Inverse Transform : = / dg, e*® ,
R

where g, is the real part of q.
The price of a claim with payoff ¢(Y7) can be obtained as follows
E:o(YT)

dg, equtEteiQ(YT*Y;:)

piaY: omX(@ [, (@8.93801-6)) (Xr—X0)

o(T—0(u(a8,a55(1-5)).0)

dg,

I
5

= EtQ(XT;Xt,Yt) .
N —

Path-indep. claim price



Example: Calls on Ly

8>0

8 <0

0.8 1.0 12 14 16

0.8 10 1.2 14 16

We plot g(In s; z,y) as a function of s where

Eg(ln St; Xo,Y0) = E(Ly — K)*,  v(dz) = Aom(2)dz.

where K =1.0, T =1/4, Xo =Yy =0.0, m = —0.4 and X = 2.0.

Left: B8={10,2.0,3.0}, Right: 8={ 1.0,-2.0,—3.0}.



Replicating Exponential Claims
The value of an exponential claim at any time t < T is

EteinT+is[X}T — At , u= ’LL(O.), S),
where we have defined
A= et(w—u) Xet+is[X] el v ) = EteiuXT

e(T_t)l/’(%O) ’ ——
Path-ind. claim

~
F¢-measurable

To derive the hedging strategy, take the differential
A(4Q") = 4@ + QY a4, + d[A, QM)

and show that the right-hand side can be expressed as a
self-financing portfolio of , hamely

e the underlying
e zero-coupon

e European exponential where g € C.



Key Ingredients in the Derivation

e Jump in value of European claim Q,@ = E.e¥XT js
AQ,@ = Qs <eiqAXt - 1) + jump due to Aoy.
e We also have the following symmetry
Q=1 gl
where the process is given by

— o~ 1aXe+(T—1)h(-1i-q,0)



Explicit Replication Strategy
We have (traded assets in blue)

(u)
AAQM) = A, dQM +1(w —w) 2= as,

sy (Ragl) - REPagl )

(g5) ~(aj5)

m j . R, ,
+ X HY (1 - 2ig5) Mg =S,

where H € C™ satisfies

0=ar + 5 1Y (A0 - A ).
and for any ¢ € C, the processes and are given by
d = At—Q,EZ) (eiwerisZ? _ etuz _ i(w . u)(ez _ 1))N(dt,dz),
R

40" = RWqQ® /R < — el 1y ig(e” — 1))N(dt,dz).



Conclusion

e We specified semi- dynamics for a spot price S
e The volatility process o is non-parametric; it may be
non-Markovian (e.g., driven by fBM) and may jump
e |n contrast. the jumps in log price X are specified
via the risk-neutral Lévy measure
e Asymmetric jumps in X lead to asymmetric implied
volatility smiles

e We have shown how to price the following path-dependent
claims relative to the market prices of European calls and puts
e claims written purely on “realized variance” (i.e the quadratic
variation of log price).
e hybrid claims on both realized variance and final spot price
e options on LETFs
e We have shown how to replicate exponential claims with a
self-financing portfolio of traded assets. Since the family of
complex exponential payoffs form a basis, almost any other
payoff is also replicable.



